In a triangle $A B C$ if A, B, C are in $A . P$ with $\sin (2 A+B)=\sin (C-A)=\sin (B+2 C)=1 / 2$ then what are the values of A, B and C ?

Solution:

If A, B, C are in $A . P$ then

$$
\begin{gathered}
A=a, \\
B=a+b, \\
C=a+2 b .
\end{gathered}
$$

Suppose that $A \leq B \leq C$. Then $b \geq 0$. Also we have

$$
\begin{gathered}
A+B+C=\pi, \\
a+a+b+a+2 b=\pi, \\
3 a+3 b=\pi, \\
a+b=\frac{\pi}{3} .
\end{gathered}
$$

So

$$
B=a+b=\frac{\pi}{3}
$$

Further

$$
\sin (2 A+B)=\frac{1}{2} .
$$

Because $A>0$ and $B=\frac{\pi}{3}$ then

$$
\begin{gathered}
2 A+\frac{\pi}{3}=\pi-\frac{\pi}{6}, \\
A=\frac{\pi}{4}
\end{gathered}
$$

So

$$
\left\{\begin{array}{c}
a=\frac{\pi}{4} \\
a+b=\frac{\pi}{3}
\end{array}\right.
$$

Thus we have $b=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}$ and

$$
C=a+2 b=\frac{\pi}{4}+\frac{\pi}{6}=\frac{5 \pi}{12 .}
$$

By the condition of the task we have

$$
\sin (B+2 C)=\frac{1}{2} .
$$

But there is

$$
\sin (B+2 C)=\sin \left(\frac{\pi}{3}+\frac{5 \pi}{6}\right)=-\frac{1}{2} .
$$

Thus values of A, B, C do not exist.
Answer: Values of A, B, C do not exist.

