Question 1.

Find the coordinates of the centroid of the triangle having vertices at ($-1,5$), $(1,-2)$ and $(3,3)$.

Solution:

$A(-1,5), B(1,-2), C(3,3)$.
Coordinates (x, y) of the middle of the line segment with endpoints $\mathrm{A}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{A}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are

$$
x=\frac{x_{1}+x_{2}}{2}, \quad y=\frac{y_{1}+y_{2}}{2} .
$$

Let's find coordinates of the middle of the line segments $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$.

$$
\begin{gathered}
x_{E}=\frac{x_{A}+x_{B}}{2}=\frac{-1+1}{2}=0, \quad y_{E}=\frac{y_{A}+y_{B}}{2}=\frac{5-2}{2}=\frac{3}{2} . \\
E\left(x_{E}, y_{E}\right)=E\left(0, \frac{3}{2}\right) . \\
x_{F}=\frac{x_{A}+x_{C}}{2}=\frac{-1+3}{2}=1, \quad y_{F}=\frac{y_{A}+y_{C}}{2}=\frac{5+3}{2}=4 . \\
x_{D}=\frac{x_{C}+x_{B}}{2}=\frac{3+1}{2}=2, \quad y_{D}=\frac{y_{C}+y_{B}}{2}=\frac{3-2}{2}=\frac{1}{2} . \\
D\left(x_{D}, y_{D}\right)=D\left(2, \frac{1}{2}\right) .
\end{gathered}
$$

$\mathrm{AD}, \mathrm{CE}, \mathrm{BF}$ are the medians.
Let's find the equation for lines $\mathrm{AD}, \mathrm{CE}, \mathrm{BF}$:
The equation for non-vertical lines is often given in the slope-intercept form:

$$
y=m x+c
$$

Where:
m is the slope of the line.
c is the y -intercept of the line.
x is the independent variable of the function $y=f(x)$.
Therefore,
AD:

$$
\begin{gathered}
y=m x+c \\
\left\{\begin{array}{c}
D\left(2, \frac{1}{2}\right), \quad A(-1,5) \\
\left\{\begin{array} { l }
{ \frac { 1 } { 2 } = 2 m + c } \\
{ 5 = - m + c }
\end{array} \left\{\begin{array}{c}
1=4 m+2 c \\
10
\end{array}=-2 m+2 c\right.\right. \\
y_{A D}=-\frac{3}{2} x+\frac{7}{2} .
\end{array}=>m=-\frac{3}{2}, c=\frac{7}{2}\right.
\end{gathered}
$$

CE:

$$
\begin{gathered}
y=m x+c \\
\mathrm{C}(3,3), \quad E\left(0, \frac{3}{2}\right) \\
\left\{\begin{array} { c }
{ \frac { 3 } { 2 } = c } \\
{ 3 = 3 m + c }
\end{array} \quad \left\{\begin{array}{l}
\frac{3}{2}=c \\
m=\frac{1}{2}
\end{array}\right.\right. \\
y_{C E}=\frac{1}{2} x+\frac{3}{2} .
\end{gathered}
$$

BF:

$$
\begin{gathered}
y=m x+c \\
\mathrm{~B}(1,-2), \quad F(1,4) . \\
x_{b}=1 \text { and } x_{F}=1=>\text { BF is a vertical line } x=1 .
\end{gathered}
$$

The three medians intersect in a single point, the triangle's centroid.

$$
\left\{\begin{array} { c }
{ y _ { A D } = - \frac { 3 } { 2 } x + \frac { 7 } { 2 } } \\
{ y _ { C E } = \frac { 1 } { 2 } x + \frac { 3 } { 2 } } \\
{ x = 1 }
\end{array} \quad \left\{\begin{array}{c}
y_{A D}=2 \\
y_{C E}=2 \\
x=1
\end{array}\right.\right.
$$

G is a centroid of the triangle. $\mathrm{So}, \mathrm{G}(1,2)$.

