An airplane headed $\mathbf{3 0}$ degrees northeast climbing on a $\mathbf{2 0}$ degrees incline at a speed of $\mathbf{2 4 0}$ miles per hour passes 1 mile directly over a car headed south on a flat road at the rate of $\mathbf{6 0}$ miles per hour at what rate of speed are they separating after 10 minutes?

Solution:

B_{1} - the point at which a car was when an airplane was flying over it
A_{1} - the point at which there was an airplane as it flew over the car
B_{2} - the point at which a car was after t hours
A_{2} - the point at which an airplane was after t hours
$S=A_{2} B_{2}$ - the distance between an airplane and a car after t hours
$A_{1} B_{1}=1 \mathrm{ml}$
$B_{1} B_{2}=60 t$
$A_{1} A_{2}=240 t$
$H A_{2}=1+A_{1} A_{2} \sin 20^{\circ}=1+240 \sin 20^{\circ} t=1+82 t$
$H B_{2}^{2}=B_{1} B_{2}^{2}+B_{1} H^{2}-2 \cdot B_{1} B_{2} \cdot B_{1} H \cos 150^{\circ}$
$B_{1} H=A_{1} A_{3}=A_{1} A_{2} \cos 20^{\circ}=240 \cos 20^{\circ} t=226 t$
$H B_{2}^{2}=(60 t)^{2}+(226 t)^{2}-2 \cdot 60 t \cdot 226 t \cos 150^{\circ}=78,163 t^{2}$
$S^{2}=A_{2} B_{2}{ }^{2}=H B_{2}{ }^{2}+H A_{2}{ }^{2}=78,163 t^{2}+(1+82 t)^{2}=84,887 t^{2}+164 t+1$
$S(t)=\sqrt{84,887 t^{2}+164 t+1}$
The rate of speed is:
$v(t)=\frac{d S}{d t}=\frac{169,774 t+164}{2 \sqrt{84,887 t^{2}+164 t+1}}$

When $t=10 \mathrm{~min}=\frac{1}{6}$ hour
$v\left(\frac{1}{6}\right)=\frac{\frac{169,774}{6}+164}{2 \sqrt{\frac{84,887}{36}+\frac{164}{6}+1}}=291 \mathrm{ml} / \mathrm{hour}$

