Consider two ships which are joined by a cable attached to each ship at the water line. Suppose the two ships are $\mathbf{2 0 0}$ metres apart, with the cablestretched tight and attached to a pulley which is anchored halfway between the ships at a depth of 45 metres. If one ship moves away from the other at $\mathbf{3} \mathbf{~ k m} / \mathrm{h}$,how quickly is the other ship moving after one min

Solution:

Suppose that in the beginning of the ships were at the points A_{1} and B_{1}. The pulley is at the point C. So cable length is:
$l=A_{1} C+B_{1} C$
$M C=45 \mathrm{~m}$
$A_{1} M=B_{1} M=\frac{200}{2}=100 \mathrm{~m}$
$\triangle A_{1} M C$ and $\Delta B_{1} M C$:
$A_{1} C=B_{1} C=\sqrt{A_{1} M^{2}+M C^{2}}=\sqrt{100^{2}+45^{2}} \mathrm{~m}=109.66 \mathrm{~m}$
$l=2 \sqrt{100^{2}+45^{2}} m=219.32 m$
The ships are at the points A_{2} and B_{2} after one minute
$B_{1} B_{2}=v_{1} t$
$v_{1}=3 \mathrm{~km} / \mathrm{h}=\frac{3000}{60}=50 \mathrm{~m} / \mathrm{min}, t=1 \mathrm{~min}$
$B_{1} B_{2}=50 \mathrm{~m}$
$\Delta B_{2} M C$:
$B_{2} M=B_{1} M+B_{1} B_{2}=100+50=150 \mathrm{~m}$
$B_{2} C=\sqrt{B_{2} M^{2}+M C^{2}}=\sqrt{150^{2}+45^{2}} m=156.60 \mathrm{~m}$
So $A_{2} C=l-B_{2} C=219.32-156.60=62.72 m$
$\Delta A_{2} M C$
$A_{2} M=\sqrt{A_{2} C^{2}+M C^{2}}=\sqrt{62.72^{2}-45^{2}}=43.69 \mathrm{~m}$
$A_{1} A_{2}=A_{1} M-A_{2} M=100-43.69=56.31 m$
$v_{1}=\frac{A_{1} A_{2}}{t}=\frac{56.31}{1}=56.31 \mathrm{~m} / \mathrm{min}$

