Question: Kara and Allan can complete a job in 2 hours. Allan and Becky can do the job in 3 hours. Kara and Becky can do the same job in 4 hours. How many hours will it take all three working together to complete the job?

Solution:

Let the speed with which Kara does the job (J) alone is x_{k}, the speed with which Allan does the job (J) alone is x_{a} and the speed with which Becky does the job (J) alone is x_{b}, then

$$
\left\{\begin{array}{l}
2\left(x_{k}+x_{a}\right)=J \\
3\left(x_{a}+x_{b}\right)=J \\
4\left(x_{k}+x_{b}\right)=J
\end{array}\right.
$$

In question need to find how many hours will it take all three working together to complete the job:

$$
t_{a, b, k}=\frac{J}{x_{a}+x_{b}+x_{k}}
$$

Using (1) express x_{a}, x_{b}, x_{k} via J:

$$
\left\{\begin{array}{l}
x_{a}=\frac{J}{2}-x_{k} \\
x_{a}+x_{b}=\frac{J}{3} \\
x_{b}=\frac{J}{4}-x_{k}
\end{array}\right.
$$

Substitute first and third equation into second:

$$
\begin{gathered}
\frac{J}{2}-x_{k}+\frac{J}{4}-x_{k}=\frac{J}{3} \\
2 x_{k}=\frac{5 J}{12} \\
x_{k}=\frac{5 J}{24} \\
x_{a}+x_{b}+x_{k}=\frac{J}{3}+\frac{5 J}{24}=\frac{13 J}{24} \\
t_{a, b, k}=\frac{J}{x_{a}+x_{b}+x_{k}}=\frac{J}{13 J / 24}=\frac{24}{13} \approx 1.85 \text { hours }
\end{gathered}
$$

Answer: 1.85 hours

