if X squareroot $(1+\mathrm{Y})+\mathrm{Y}$ squareroot $(1+\mathrm{X})=0$ then find $\mathrm{dy} / \mathrm{dx}$
Xsquareroot $(1+\mathrm{Y})+\mathrm{Y}$ squareroot $(1+\mathrm{X})=0=>\quad x \sqrt{1+y}+y \sqrt{1+x}=0$
find $d(x \sqrt{1+y}+y \sqrt{1+x})=d(0)$
0 is constant, so $d(0)=0$
$d(x \sqrt{1+y}+y \sqrt{1+x})=0$
The sum rule:
$d(x \sqrt{1+y})+d(y \sqrt{1+x})=0$
The product rule (Leibniz rule):
$\sqrt{1+y} d x+x d(\sqrt{1+y})+\sqrt{1+x} d y+y d(\sqrt{1+x})=0$
$d(\sqrt{1+y})=\frac{d y}{2 \sqrt{1+y}}$
Finally:
$\sqrt{1+y} d x+x \frac{d y}{2 \sqrt{1+y}}+\sqrt{1+x} d y+y \frac{d x}{2 \sqrt{1+x}}=0$
Or:
$d x\left(\sqrt{1+y}+\frac{y}{2 \sqrt{1+x}}\right)=-d y\left(\sqrt{1+x}+\frac{x}{2 \sqrt{1+y}}\right)$
$\frac{d y}{d x}=-\frac{\left(\sqrt{1+y}+\frac{y}{2 \sqrt{1+x}}\right)}{\left(\sqrt{1+x}+\frac{x}{2 \sqrt{1+y}}\right)}$

