solve the logarithmic equation:

$$
x=\left(\log _{2} \sqrt{2}\right)^{3}
$$

Solution:

1) $\sqrt{2}=2^{\frac{1}{2}} \Rightarrow\left(\log _{2} \sqrt{2}\right)^{3}=\left(\log _{2} 2^{1 / 2}\right)^{3}$
2) Delivers the power of two of the logarithm in accordance with the property of the logarithm $=>\left(\log _{2} 2^{1 / 2}\right)^{3}=\left(\frac{1}{2} \log _{2} 2\right)^{3}$
3) $\log _{2} 2=1 \Rightarrow\left(\frac{1}{2} \log _{2} 2\right)^{3}=\left(\frac{1}{2} * 1\right)^{3}$
4) We raise this expression to the cube and get $\left(\frac{1}{2} * 1\right)^{3}=\frac{1}{8}$

$$
x=\left(\log _{2} \sqrt{2}\right)^{3}=\left(\log _{2} 2^{1 / 2}\right)^{3}=\left(\frac{1}{2} \log _{2} 2\right)^{3}=\frac{1}{8}
$$

Answer: $x=1 / 8$

