Task. A fair coin is tossed 99 times. If x is the number of times heads occurs then when $P(x=r)$ is maximum?

Answer. Notice that x has binominal distribution with $n=99, p=q=0.5$. Therefore the probability

$$
P(x=r)=C_{n}^{r} p^{r} q^{n-r}
$$

where

$$
C_{n}^{r}=\frac{n!}{r!(n-r)!}
$$

Since $p=q=0.5$ we obtain that

$$
P(x=r)=C_{n}^{r} 0.5^{r} 0.5^{n-r}=0.5^{n} C_{n}^{r}
$$

Thus maximum of $P(x=r)$ corresponds to the value of r with maximal

$$
C_{n}^{r}=\frac{n!}{r!(n-r)!}
$$

Notice that binominal coefficients are symmetric:

$$
C_{n}^{r}=C_{n}^{n-r}=\frac{n!}{r!(n-r)!}
$$

whence the maximum corresponds to the points most closest to $n / 2$.
Since n is odd, there are two such values:

$$
r_{1}=\frac{n-1}{2}=\frac{98}{2}=49, \quad r_{2}=\frac{n+1}{2}=\frac{100}{2}=50
$$

For these numbers the function $P(x=r)$ has maximum.

