```
Let }A={1,1/2,1/4,1/8,\ldots} and B={ 1/2,3/4,7/8,\ldots}. Explain why supA=supB=1
```


Solution.

By the definition $\sup A$ is the least number s such that $a_{n} \leq s$ for any $a_{n} \in A$. Obviously, value $s=1$ satisfies this condition.

Consider now the sequence $B=\left\{\boldsymbol{b}_{n}\right\}$, here $\boldsymbol{b}_{n}=\left(2^{n}-1\right) / 2^{n}, n=1,2, \ldots$ and suppose that $\sup B=s<1$. Note that b_{n} increases, $\boldsymbol{b}_{n}<1$ and $\lim _{n \rightarrow \infty} \boldsymbol{b}_{n}=1$. It means that any ε-vicinity of 1 contains elements of this sequence. Let's take ,for example, $\varepsilon=1-s$ and suppose that the terms b_{n} belong to this vicinity. But then it follows that $b_{n}>1-\varepsilon=1-(1-s)=s$ and by this reason $\sup B$ can't be less than 1.

Thus, $\sup A=\sup B=1$.

