Solution.

By the definition $\sup A$ is the least number s such that $a_n \leq s$ for any $a_n \in A$. Obviously, value s = 1 satisfies this condition.

Consider now the sequence $B = \{b_n\}$, here $b_n = (2^n - 1)/2^n$, n = 1, 2, ... and suppose that $\sup B = s < 1$. Note that b_n increases, $b_n < 1$ and $\lim_{n \to \infty} b_n = 1$. It means that any ε -vicinity of 1 contains elements of this sequence. Let's take ,for example, $\varepsilon = 1 - s$ and suppose that the terms b_n belong to this vicinity. But then it follows that $b_n > 1 - \varepsilon = 1 - (1 - s) = s$ and by this reason $\sup B$ can't be less than 1.

Thus, $\sup A = \sup B = 1$.