How to determine area and volume of the function $f(x)=2+\sin (x)$ rotated around the x axis from $(0 ; 2 \pi)$? The slice is a circle.

Solution:

Volume

$$
\begin{aligned}
& V=\pi \int_{0}^{2 \pi}(f(x))^{2} d x=\pi \int_{0}^{2 \pi}(2+\sin (x))^{2} d x=\pi \int_{0}^{2 \pi}\left(4+4 \sin (x)+(\sin (x))^{2}\right) d x= \\
& =\pi\left(\left.4 x\right|_{0} ^{2 \pi}-\left.4 \cos (x)\right|_{0} ^{2 \pi}+\frac{1}{2} \int_{0}^{2 \pi}(1-\cos (2 x)) d x\right)= \\
& =\pi\left(8 \pi-0+\left.\frac{1}{2} x\right|_{0} ^{2 \pi}-\left.\frac{1}{4} \sin (2 x)\right|_{0} ^{2 \pi}\right)=\pi(8 \pi-0+\pi-0)=9 \pi^{2} \text { (cubic units) }
\end{aligned}
$$

Area

$$
\begin{gathered}
S=2 \pi \int_{0}^{2 \pi} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=2 \pi \int_{0}^{2 \pi}(2+\sin (x)) \sqrt{1+(\cos (x))^{2}} d x= \\
=4 \pi \int_{0}^{2 \pi} \sqrt{1+(\cos (x))^{2}} d x=16 \pi \int_{0}^{\frac{\pi}{2}} \sqrt{1+(\cos (x))^{2}} d x
\end{gathered}
$$

We have to replacement

$$
t=\tan \left(\frac{x}{2}\right), d x=\frac{2 d t}{1+t^{2}}, \cos (x)=\frac{1-t^{2}}{1+t^{2}}
$$

Then we have

$$
\begin{gathered}
S=16 \pi \int_{0}^{1} \sqrt{1+\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}} \frac{2 d t}{1+t^{2}}=32 \pi \int_{0}^{1} \frac{\sqrt{\left(1+t^{2}\right)^{2}+(1-t)^{2}} d t}{\left(1+t^{2}\right)^{2}}= \\
=32 \sqrt{2} \pi \int_{0}^{1} \frac{\sqrt{1+t^{4}} d t}{\left(1+t^{2}\right)^{2}}
\end{gathered}
$$

This integral is very difficult. So we can use numerical integration. Then we have

$$
S \approx 32 \sqrt{2} \pi \cdot 0.678551 \approx 96.47113 \text { (square units) }
$$

