Solve $\sin 3 x+\cos 2 x=-2$

Solution:

As we know $\sin \alpha \geq-1$ for any α, also $\cos \beta \geq-1$ for any β.
So the maximum value of the expression $\sin \alpha+\cos \beta \geq-1-1$ is -2 , and it is only if $\sin \alpha=-1$ and $\cos \beta=-1$

So we have next system:

$$
\begin{gathered}
\left\{\begin{array}{l}
\sin 3 x=-1 \\
\cos 2 x=-1
\end{array}\right. \\
\left\{\begin{array}{c}
3 x=-\frac{\pi}{2}+2 \pi n, n \in Z \\
2 x=\pi+2 \pi k, k \in Z
\end{array}\right. \\
\left\{\begin{array}{c}
x=-\frac{\pi}{6}+\frac{2 \pi n}{3}, n \in Z \\
x=\frac{\pi}{2}+\pi k, k \in Z
\end{array}\right. \\
\left\{\begin{aligned}
\frac{\pi}{2}+\pi k & =-\frac{\pi}{6}+\frac{2 \pi n}{3}, n, k \in Z \\
x & =\frac{\pi}{2}+\pi k, k \in Z
\end{aligned}\right.
\end{gathered}
$$

We must solve the first equation in integers

$$
\begin{gathered}
\left\{\begin{array}{c}
k=-\frac{1}{6}+\frac{2 n}{3}-\frac{1}{2}, n, k \in Z \\
x=\frac{\pi}{4}+\pi k, k \in Z
\end{array}\right. \\
\left\{\begin{array}{c}
k=\frac{2 n-2}{3}, n, k \in Z \\
x=\frac{\pi}{2}+\pi k, k \in Z
\end{array}\right. \\
\left\{\begin{array}{c}
3 k=2 n-2, n, k \in Z \\
x=\frac{\pi}{2}+\pi k, k \in Z
\end{array}\right.
\end{gathered}
$$

The right sight of equation 1 is even, so $3 k$ must be even too, so k must be even. If k is even it can be present as $k=2 * p$ where $p \in Z$

So $x=\frac{\pi}{2}+\pi k=\frac{\pi}{2}+2 \pi p, p \in Z$
Answer: $\quad \frac{\pi}{2}+2 \pi p, p \in Z$

