Find the canonical form of the following PDE:
$u_{x x}-6 u_{x y}+9 u_{y y}=x y^{2}$
**Be sure to show the change of coordinates that reduces the PDE to canonical form.

Solution:

$a=1, b=-3, c=9$
$\Delta=b^{2}-a c=(-3)^{2}-1 \cdot 9=0$, so the equation is parabolic.
Write down the characteristic equation:
$d y^{2}+6 d x d y+9 d x^{2}=0$
$\frac{d y}{d x}=-3$
$y=-3 x+C$

Determine new variables ξ and η :
$\xi=\varphi(x, y)=3 x+y$
$\varphi_{x}=3, \varphi_{y}=1, \varphi_{x x}=0, \varphi_{x y}=0, \varphi_{y y}=0$
$\eta=\psi(x, y)=x$
$\psi_{x}=1, \psi_{y}=0, \psi_{x x}=0, \psi_{x y}=0, \psi_{y y}=0$
$\left|\begin{array}{ll}\varphi_{x} & \psi_{x} \\ \varphi_{y} & \psi_{y}\end{array}\right|=\left|\begin{array}{ll}3 & 1 \\ 1 & 0\end{array}\right| \neq 0$
$u_{x x}=u_{\xi \xi} \varphi_{x}{ }^{2}+2 u_{\xi \eta} \varphi_{x} \psi_{x}+u_{\eta \eta} \psi_{x}^{2}+u_{\xi} \varphi_{x x}+u_{\eta} \psi_{x x}=9 u_{\xi \xi}+6 u_{\xi \eta}+u_{\eta \eta}$
$u_{x y}=u_{\xi \xi} \varphi_{x} \varphi_{y}+u_{\xi \eta}\left(\varphi_{x} \psi_{y}+\varphi_{y} \psi_{x}\right)+u_{\eta \eta} \psi_{x} \psi_{y}+u_{\xi} \varphi_{x y}+u_{\eta} \psi_{x y}=3 u_{\xi \xi}+u_{\xi \eta}$
$u_{y y}=u_{\xi \xi} \varphi_{y}{ }^{2}+2 u_{\xi \eta} \varphi_{y} \psi_{y}+u_{\eta \eta} \psi_{y}{ }^{2}+u_{\xi} \varphi_{y y}+u_{\eta} \psi_{y y}=u_{\xi \xi}$
$9 u_{\xi \xi}+6 u_{\xi \eta}+u_{\eta \eta}-6\left(3 u_{\xi \xi}+u_{\xi \eta}\right)+9 u_{\xi \xi}=\eta(\xi-3 \eta)^{2}$

The canonical form is:
$u_{\eta \eta}=\eta(\xi-3 \eta)^{2}$

