Show that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ is not uniformly continuous on R.
Solution.
Function $f(x)$ is uniformly continuous on R if for arbitrary $\varepsilon>0$ there exists $\delta>0$ such that as soon as $\left|x-x_{0}\right|<\delta$ it follows that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ for any $x_{0} \in R$.

Note that the value of δ doesn't depend upon the choice of \boldsymbol{X}_{0}.
Now suppose that $\varepsilon>0$ is given and let us try to find corresponding value of δ.
Using Lagrange theorem we can write that

$$
\left|f(x)-f(x)_{0}\right|=\left|f^{\prime}(c)\right| *\left|x-x_{0}\right|=|2 c|\left|x-x_{0}\right|,
$$

where $c \in\left[\mathcal{X}_{0}, x\right]$.
Let $\left|x-x_{0}\right|<\delta$ and in order to find the value of δ we demand that

$$
|2 c|\left|x-x_{0}\right|<|2 c| \delta=\varepsilon .
$$

From this $\delta=\varepsilon /|2 c|$.But as the value of c depends on x_{0} then the value of δ depends on the choice of x_{0} too. So the value of δ which is common for all points $x_{0} \in R$ doesn't exist.
Therefore the function $f(x)=x^{2}$ is not uniformly continuous on R. Q.E.D.

