Show that $f(x) = x^2$ is not uniformly continuous on R. Solution.

Function f(x) is uniformly continuous on R if for arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that as soon as $|x - \chi_0| < \delta$ it follows that $|f(x) - f(\chi_0)| < \varepsilon$ for any $\chi_0 \in R$.

Note that the value of δ doesn't depend upon the choice of χ_0 .

Now suppose that $\varepsilon > 0$ is given and let us try to find corresponding value of δ .

Using Lagrange theorem we can write that

$$|f(x) - f(\mathbf{\chi})_0| = |f'(c)| * |x - \mathbf{\chi}_0| = |2c||x - \mathbf{\chi}_0|,$$

where $c \in [\chi_0, x]$.

Let $|x - \chi_0| < \delta$ and in order to find the value of δ we demand that

$$|2c||x-\chi_0| < |2c|\delta = \varepsilon$$

From this $\delta = \varepsilon / |2c|$. But as the value of c depends on χ_0 then the value of δ depends on the choice of χ_0 too. So the value of δ which is common for all points $\chi_0 \in R$ doesn't exist. Therefore the function $f(x) = \chi^2$ is not uniformly continuous on R. Q.E.D.