Question 1. In the quadrilateral $A B C D$:

$$
C A \perp D B, \quad B C=6 \mathrm{~cm}, \quad C D=3 \mathrm{~cm}, D A=5 \mathrm{~cm} .
$$

Find $A B$.
Solution. Let O be the intersection of $C A$ and $D B$. By Pythagorean theorem for $\triangle A O B, \triangle B O C, \triangle C O D, \triangle D O A$ we have

$$
\begin{aligned}
& O A^{2}+O B^{2}=A B^{2}, \\
& O B^{2}+O C^{2}=B C^{2}, \\
& O C^{2}+O D^{2}=C D^{2}, \\
& O A^{2}+O D^{2}=A D^{2}
\end{aligned}
$$

Adding the first 3 equalities we get

$$
O A^{2}+O D^{2}+2\left(O B^{2}+O C^{2}\right)=A B^{2}+B C^{2}+C D^{2}
$$

But $O A^{2}+O D^{2}=A D^{2}$ and $O B^{2}+O C^{2}=B C^{2}$, so

$$
A D^{2}+2 B C^{2}=A B^{2}+B C^{2}+C D^{2}
$$

whence

$$
A B^{2}=A D^{2}+B C^{2}-C D^{2}=25+36-9=52 .
$$

Answer: $A B=\sqrt{52}=2 \sqrt{13} \mathrm{~cm}$.

