
Use Green’s theorem to evaluate 

   𝑥2 + 𝑥𝑦 𝑑𝑥 +  𝑥2 + 𝑦2 𝑑𝑦 
С

 

where C is the square formed  by the lines y=±1 and x±1. 
 
Solution: 
 
Green’s theorem: 

Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be 
the region bounded by C. If L and M are functions of (x, y) defined on an open region containing 
D and have continuous partial derivatives there, then  

  𝐿(𝑥, 𝑦)𝑑𝑥 + 𝑀(𝑥, 𝑦)𝑑𝑦 
С
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where the path of integration along C is counterclockwise. 

 

 

In our case 

𝐿 𝑥, 𝑦 = 𝑥2 + 𝑥𝑦, 𝑀 𝑥, 𝑦 = 𝑥2 + 𝑦2, 

𝜕𝑀

𝜕𝑥
= 2𝑥,

𝜕𝐿

𝜕𝑦
= 𝑥. 

Thus 

   𝑥2 + 𝑥𝑦 𝑑𝑥 +  𝑥2 + 𝑦2 𝑑𝑦 
С
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Answer:  

   𝑥2 + 𝑥𝑦 𝑑𝑥 +  𝑥2 + 𝑦2 𝑑𝑦 
С

= 0 
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