

Use Green's theorem to evaluate

$$\oint_C ((x^2 + xy)dx + (x^2 + y^2)dy)$$

where C is the square formed by the lines $y=\pm 1$ and $x=\pm 1$.

Solution:

Green's theorem:

Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C . If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then

$$\oint_C (L(x, y)dx + M(x, y)dy) = \iint_D \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} \right) dxdy$$

where the path of integration along C is counterclockwise.

In our case

$$L(x, y) = x^2 + xy, M(x, y) = x^2 + y^2,$$

$$\frac{\partial M}{\partial x} = 2x, \frac{\partial L}{\partial y} = x.$$

Thus

$$\begin{aligned} \oint_C ((x^2 + xy)dx + (x^2 + y^2)dy) &= \iint_D (2x - x) dxdy = \\ &= \iint_D x dxdy = \int_{-1}^1 dy \int_{-1}^1 x dx = \int_{-1}^1 \left(\frac{x^2}{2} \Big|_{-1}^1 \right) dy = \int_{-1}^1 \left(\frac{1^2}{2} - \frac{(-1)^2}{2} \right) dy = \\ &= \int_{-1}^1 \left(\frac{1}{2} - \frac{1}{2} \right) dy = 0 \end{aligned}$$

Answer:

$$\oint_C ((x^2 + xy)dx + (x^2 + y^2)dy) = 0$$