

An aeroplane is moving one km high from west to east horizontally from a point on the ground. The angle of elevation of the aeroplane is 60° and after 10 sec the angle of elevation of the plane is observed as 30° . Find the speed of the plane in km/hr.

Solution:

Given:

$$AD = BC = 1\text{ km}, \angle AOD = 60^\circ, \angle BOD = 30^\circ$$

Let x be the distance of the observer to the point on the ground at the beginning

$$x = OD$$

$$\text{In } \triangle AOD \tan \angle AOD = \frac{AD}{OD}, \text{ so}$$

$$OD = \frac{AD}{\tan \angle AOD} = \frac{1}{\tan 60^\circ} = 0.58\text{ km}$$

Let y be the distance of the observer to the point on the ground at the end

$$y = OC$$

$$\text{In } \triangle BOC \tan \angle BOC = \frac{BC}{OC}, \text{ so}$$

$$OC = \frac{BC}{\tan \angle BOC} = \frac{1}{\tan 30^\circ} = 1.73\text{ km}$$

So the plane is flying for 10 seconds

$$y - x = 1.73 - 0.58 = 1.15\text{ km}$$

The speed of the plane is

$$V = \frac{1.15}{10} = 0.115 \text{ km/sec} = 0.115 \times 3600 = 414 \text{ km/hr}$$

Answer: The speed of the plane is 414 km/hr.