

Conditions

The total surface area S of a right circular cylinder is related to the base radius r and height h by the equation $S=2\pi r^2+2\pi rh$

- a) How is dS/dt related to dr/dt and dh/dt if neither r nor h is a constant?
- b) How is dS/dt related to dr/dt if h is constant?
- c) How is dS/dt related to dr/dt if r is constant?

Solution

a)

we must take the derivative by t , looking at r and h as functions of t :

$$r = r(t); h = h(t)$$

$$S = 2\pi r^2 + 2\pi rh$$

$$\frac{dS}{dt} = 4\pi r \cdot \frac{dr}{dt} + 2\pi r \frac{dh}{dt} + 2\pi h \frac{dr}{dt}$$

b) if h is a constant, then:

$$\frac{dS}{dt} = 4\pi r \cdot \frac{dr}{dt} + 0 + 2\pi h \frac{dr}{dt} = 2\pi(2r + h) \frac{dr}{dt}$$

c) if r is a constant, then:

$$\frac{dS}{dt} = 0 + 2\pi r \frac{dh}{dt} + 0 = 2\pi r \frac{dh}{dt}$$