A hot-air balloon over Albuquerque, New Mexico, is being blown due east from point P and traveling at a constant height of 800 ft . The angle y is formed by the ground and the line of vision from P to the balloon. This angle changes as the balloon travels.
(a) Express the horizontal distance x as a function of the angle y.
(b) When the angle is $\frac{\pi}{20}$ rad, what is its horizontal distance from P ?
(c) An angle of $\frac{\pi}{20}$ rad is equivalent to how many degrees?

Solution:

(a) $\triangle P M N$ is a right-angled triangle, where PM is the hypotenuse, MN is the side opposite the angle y and $P N$ is the side adjacent to y.
$\cot y=\frac{P N}{M N}$, so
$\cot y=\frac{x}{800}$, so
$x=800 \cot y$
(b) Given $y=\frac{\pi}{20} \mathrm{rad}$
$x=800 \cot \frac{\pi}{20}=5,051 \mathrm{ft}$
(c) $\pi \mathrm{rad}=180^{\circ}$, so $\frac{\pi}{20} \mathrm{rad}=\frac{180^{\circ}}{20}=9^{\circ}$

