$A B C D$ is a trapezium in which $A B$ is parallel to $C D . O$ is mid point of $B C$.
Through the point O , a line PQ parallel to $A D$ has been dawn which intersects $A B$ at Q and $D C$ produced at P. Prove that $\operatorname{ar}(A B C D)=\operatorname{ar}(A Q P D)$.

Solution:

Area $A B C D=$ AreaAQOCD + Area $\triangle Q O B$
Area $A Q P D=$ AreaAQOCD + Area $\triangle P O C$
$O C=O B$ (given)
$\angle C O P=\angle B O Q$ (vertically opposite angles are equal)
$\angle C P O=\angle B Q O$ ($A B \| C D$ - given. If the lines are parallel, then the alternate angles are equal)
So $\triangle Q O B=\triangle P O C$ and so Area $A B C D=$ AreaAQPD.

