A club consists of four girls and six boys.
a. In how many ways can a committee of three people be chosen?
b. In how many ways can two boys and two girls be chosen to attend a competition?
c. In how many ways can three boys be chosen?
d. What is the probability that three boys will be chosen?
a) We can choose a committee of three people in $C^{4+6} \begin{gathered}4 \\ 3\end{gathered} C_{3}^{10}=\frac{10!}{3!7!}=\frac{8 \cdot 9 \cdot 10}{1 \cdot 2 \cdot 3}=120$ ways.
b) C_{2}^{4} for girls and C_{2}^{6} for boys, so we can choose 2 boys and 2 girls in $C_{2}^{4} C_{2}^{6}=\frac{4!}{2!2!} \cdot \frac{6!}{2!4!}=\frac{6!}{2 \cdot 2 \cdot 2}=$ 90 ways.
c) $C_{3}^{6}=\frac{6!}{3!3!}=20$
d) $P=\frac{m}{n}=\frac{C_{3}^{6}}{C_{3}^{10}}=\frac{20}{120}=\frac{1}{6}$

