

Task:

The Simpson method for angular speed is not radians per second.

It is degrees per second: $\omega_D = r \cdot D$ (ω_D is known as Doh-mega).

In order to communicate effectively with his coworkers, Homer needs to convert from Doh-mega to ω and from ω to Doh-mega.

(a) Write a formula to convert measurements in degrees per second (ω_D) to radians per second (ω).

(b) Write a formula to convert measurements in radians per second (ω) to degrees per second (ω_D).

Solution:

We know that a straight angle is 180 degrees and it has a measure of π radians. Therefore $180^\circ = \pi$ radians. Hence we get $1 \text{ rad} = \left(\frac{180}{\pi}\right)^\circ$, and $1^\circ = \left(\frac{\pi}{180}\right) \text{ rad}$.

Based on the above relations, we get:

(a)

$$\omega = \omega_D \cdot \left(\frac{\pi}{180}\right) \text{ rad} = \left(\frac{\pi \cdot \omega_D}{180}\right) \text{ rad} \approx (0.0174 \cdot \omega_D) \text{ rad}$$

(b)

$$\omega_D = \omega \cdot \left(\frac{180}{\pi}\right)^\circ = \left(\frac{180 \cdot \omega}{\pi}\right)^\circ \approx (57.325 \cdot \omega)^\circ$$

Answer: (a) $(0.0174 \cdot \omega_D)$ and (b) $(57.325 \cdot \omega)$.