

Question 1. A circle with radius of $63.010\mu\text{m}$ is centered at the origin of a CCS. Angles α and β are in standard position, $\alpha = 1.100$ radians, and $\beta = 1.257$ radians.

- (a) What is the length of the arc that is captured between α and β ?
- (b) To the nearest degree, what is the size of the angle between the terminal side of α and the terminal side of β ?

Solution. (a) The arc between α and β connects the endpoints of the terminal sides of α and β . Therefore, it subtends the angle $\beta - \alpha = 1.257 - 1.1 = 0.157$ radians. Thus, the length of this arc is

$$(\beta - \alpha)R = 0.157 \cdot 63.010 \approx 9.89\mu\text{m}.$$

(b) We have calculated above that this angle is $\beta - \alpha = 0.157$ radians. It only remains to express this angle measure in degrees:

$$0.157 \text{ radians} = 0.157 \cdot \frac{180^\circ}{\pi} \approx 9^\circ.$$

Answer:

- (a) $\approx 9.89\mu\text{m}.$
- (b) $\approx 9^\circ.$

□