

Find the true speed and bearing. Wind vector: N11E (degrees) 55mph. Airspeed: 500mph. Direct flight bearing: N35.2E (degrees)

$$\alpha = 35,2 - 11 = 24,2^\circ$$

To find the true speed use Law of cosine:

$$c = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \alpha}$$

\vec{a} – wind vector;

\vec{b} – vector of the direct flight;

\vec{c} – true bearing vector;

α – angle between wind vector and direct flight vector.

$$\vec{c} = \sqrt{55^2 + 500^2 - 2 \cdot 55 \cdot 500 \cdot \cos(180^\circ - 24,2^\circ)} = \sqrt{253025 - 50166,606} \\ = 550,628$$

To find the true bearing use the Law of sine

$$\frac{55}{\sin \beta} = \frac{500}{\sin(180^\circ - \alpha)}$$

β – angle between \vec{c} and \vec{a} .

$$\beta = \arcsin \left(\frac{55 \cdot \sin(180^\circ - \alpha)}{500} \right) = 2,584^\circ$$

The true bearing is

$$35,2^\circ - 2,584^\circ = 32,616^\circ$$

The true speed is 550,628 mph, and bearing is 32,616°.