

Question 24849 Person A chooses a random real number a from 0 to 2 , Person B chooses a random real number b from 0 to 2 What is the probability that $|a - b| \geq 1/3$.

Solution. In fact, we get some random point in the square $[0, 2] \times [0, 2]$, so here we have deal with geometric probability and the probability above is the probability that our point (a, b) is not in the triangles(defined by vertexes) $(0, 0), (0, 1/3), (1/3, 0), (1, 1), (1, 2/3), (2/3, 1)$. We need to compute the area of the square without those triangles $4 - 2 \cdot 1/2(1/3)^2$ equals $E[\mathbb{I}_{|a-b| \geq 1/3}] = \int_{(a,b) \in [0,2]^2, |a-b| \geq 1/3} 1/4 da db = \frac{4 - 2 \cdot 1/2(1/3)^2}{4} = \frac{35}{36}$.