

**Question 24847** Differentiate  $e^{2x} \log(x^2 - 3)$  with respect to  $x$  and differentiate  $(3x^2 + 2x)e^{-x}$  with respect to  $x$  . .

**Solution.** Using the rule of differentiating product  $(f \cdot g)' = f' \cdot g + g' \cdot f$  and the rule of differentiating of superposition of functions  $(f(g(x)))' = f'(g(x))g'(x)$  one gets that  $\frac{d}{dx}(e^{2x} \log(x^2 - 3)) = 2e^{2x} \log(x^2 - 3) + e^{2x} \frac{2x}{x^2 - 3}$ . Next,  $((3x^2 + 2x)e^{-x})' = (6x + 2)e^{-x} - e^{-x}(3x^2 + 2x) = e^{-x}(-3x^2 + 4x + 2)$ .