

All statement implies from formula $\det A = \sum (-1)^{[i_1, i_2, \dots, i_n]} a_{i_1 1} a_{i_2 2} \dots a_{i_n n}$.

- 1) if we substitute $a_{i_k k}$ by $ta_{i_k k}$, (row is multiplied by t) then we can bring t out of sum, and we are done.
- 2) as any transposition changes sign of permutation, then $[i_1, i_2, \dots, i_n]$ will be changed from odd to even and vice versa in every summand, so sign of $\det A$ will be opposite.
- 3) if one of rows is equal to another one, then their permutation change sign of $\det A$, and in general $\det A$ will be the same. It can be iff $\det A=0$. So, if we have

$$\sum (-1)^{[i_1, i_2, \dots, i_n]} a_{i_1 1} a_{i_2 2} \dots (a_{i_k k} + ta_{i_l l}) \dots a_{i_n n} = \sum (-1)^{[i_1, i_2, \dots, i_n]} a_{i_1 1} a_{i_2 2} \dots (a_{i_k k}) \dots a_{i_n n} + t \sum (-1)^{[i_1, i_2, \dots, i_n]} a_{i_1 1} a_{i_2 2} \dots (a_{i_l l}) \dots a_{i_n n}$$

then in first summand all i's are distinct, and in second l is being used twice, so second summand is zero.