

The first and last term of AP are a and l respectively. If S is the sum of all the terms of the AP and the common difference is given by $(l^2-a^2)/k-(l+a)$, then $k = ?$

Solution

Let the common difference and number of terms of AP be d and n respectively.

Last term of AP = n^{th} of the AP, a_n

$\rightarrow a_n = / (Given)$

$$\rightarrow a + (n-1)d = l \rightarrow n = \frac{l-a}{d} + 1 \quad \dots (1)$$

Sum of n terms of A.P. = $S (Given)$

$$\frac{n}{2}[2a + (n-1)d] = S$$

$$\rightarrow \frac{1}{2}\left(\frac{l-a}{d} + 1\right) \left[2a + \left(\frac{l-a}{d} + 1 - 1\right)d\right] = S \quad (\text{Using (1)})$$

$$\rightarrow \frac{1}{2}\left(\frac{l-a}{d} + 1\right) [2a + (l-a)] = S$$

$$\rightarrow \frac{1}{2}\left(\frac{l-a}{d} + 1\right) (a + l) = S$$

$$\rightarrow \frac{l-a}{d} + 1 = \frac{2S}{l+a}$$

$$\rightarrow \frac{l-a}{d} = \frac{2S}{l+a} - 1 = \frac{2S - (l+a)}{l+a}$$

$$\rightarrow d = \frac{(l+a)(l-a)}{2S - (l+a)}$$

Comparing with $d = \frac{l^2-a^2}{k-(l+a)}$, we get $k = 2S$

Thus, the value of k is $2S$.

Answer: the value of k is $2S$.