prove Heron's formula for area of a triangle whose sides are given a,b,c

The demonstration and proof of Heron's formula can be done from elementary consideration of geometry and algebra. I will assume the Pythagorean theorem and the area formula for a triangle

$$
A=\frac{1}{2} b h
$$

where b is the length of a base and h is the height to that base.

Let a, b, and c be the lengths of the sides of our triangle and h the height to the side of length c .

We have

$$
S=\frac{a+b+c}{2}
$$

so, for future reference,

$$
\begin{gathered}
2 s=a+b+c \\
2(s-a)=-a+b+c \\
2(s-b)=a-b+c \\
2(s-c)=a+b-c
\end{gathered}
$$

There is at least one side of our triangle for which the altitude lies "inside" the triangle. For convenience make that the side of length c . It will not make any difference, just simpler.

Our task is to express h in terms of a, b, and c , then substitute for h in $A=\frac{1}{2} c h$.

Let $\mathrm{p}+\mathrm{q}=\mathrm{c}$ as indicated. Then

$$
h^{2}+p^{2}=a^{2}
$$

and

$$
h^{2}+q^{2}=b
$$

Since

$$
q=c-p,
$$

then

$$
q^{2}=(c-p)^{2}
$$

and

$$
q^{2}=c^{2}-2 c p+p^{2}
$$

Adding h^{2} to each side gives

$$
h^{2}+q^{2}=h^{2}+c^{2}-2 c p+p^{2} .
$$

Now substitute in this equation and get $b^{2}=a^{2}-2 c p+c^{2}$ and solve for p to get

$$
p=\frac{a^{2}+c^{2}-b^{2}}{2 c}
$$

Now, since $h^{2}=a^{2}-p^{2}$ we can substitute for p and get an expression in terms of a, b, and c.

$$
\begin{gathered}
h^{2}=a^{2}-p^{2}= \\
(a+p)(a-p)= \\
\left(a+\frac{a^{2}+c^{2}-b^{2}}{2 c}\right)\left(a-\frac{a^{2}+c^{2}-b^{2}}{2 c}\right)= \\
\left(\frac{2 a c+a^{2}+c^{2}-b^{2}}{2 c}\right)\left(\frac{2 a c-a^{2}-c^{2}+b^{2}}{2 c}\right)= \\
\frac{\left((a+c)^{2}-b^{2}\right)\left(b^{2}-(a-c)^{2}\right)}{4 c^{2}}=\frac{(a+b+c)(-a+b+c)(a+b+c)(a+b-c)}{4 c^{2}}=
\end{gathered}
$$

$$
\frac{2 s * 2(s-a) * 2(s-b) * 2(s-c)}{4 c^{2}}
$$

Therefore

$$
\begin{aligned}
h^{2} & =\frac{4 s(s-a)(s-b)(s-c)}{c^{2}} \\
h^{2} & =\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{c}
\end{aligned}
$$

Since

$$
A=\frac{1}{2} c h,
$$

then

$$
A=\frac{1}{2} c \frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{c}
$$

and

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

