Answer:

If question is:

$$
\int \frac{3 x^{3}}{x^{4}}+5 d x
$$

Then solution:

$$
\frac{3 x^{3}}{x^{4}}+5=\frac{3}{x}+5
$$

So:

$$
\int \frac{3 x^{3}}{x^{4}}+5 d x=\int \frac{3}{x}+5 d x=3 \int \frac{1}{x} d x+5 \int 1 d x
$$

As it is known:

$$
\begin{gathered}
\int \frac{1}{x} d x=\ln x+\text { const } \\
\int 1 d x=x+\text { const }
\end{gathered}
$$

Thus:

$$
\int \frac{3 x^{3}}{x^{4}}+5 d x=3 * \ln x+5 * x+\text { const }
$$

But is the question is (which is more likely, I suppose you missed the brackets):

$$
\int \frac{3 x^{3}}{x^{4}+5} d x
$$

Using:

$$
4 x^{3} d x=d\left(x^{4}\right)
$$

And

$$
d\left(x^{4}+5\right)=d\left(x^{4}\right)
$$

Get:

$$
\int \frac{3 x^{3}}{x^{4}+5} d x=\frac{3}{4} \int \frac{d\left(x^{4}+5\right)}{x^{4}+5}
$$

As it is known:

$$
\int \frac{1}{x} d x=\ln x+\text { const }
$$

So:

$$
\int \frac{3 x^{3}}{x^{4}+5} d x=\frac{3}{4} \ln \left(x^{4}+5\right)+\text { const }
$$

