What is the area of pentagon ABCDE with vertices $\mathrm{A}(-5,6), \mathrm{B}(1,-7), \mathrm{C}(6,0), \mathrm{D}(1,3), \mathrm{E}(1,6)$

Solution:
1). $x_{E}=x_{D}=x_{B}=1$, so the points E, D and B are collinear points.

Hence
Area $A B C D E=$ Area $A B E+$ Area $B C D$.
2). $y_{A}=y_{E}=6$, so AE is parallel y -axis
$x_{B}=x_{E}=1$, so BE is parallel x -axis
Hence the triangle $A B E$ is a right triangle and its area is
Area $\mathrm{ABE}=\frac{1}{2}(\mathrm{AE} \times \mathrm{EB})$
$A E=\left|x_{A}-x_{E}\right|=|-5-1|=6$
$E B=\left|y_{E}-y_{B}\right|=|6+7|=13$
Area $\mathrm{ABE}=\frac{1}{2}(6 \times 13)=39$
3). The points D, H and B are collinear points, so $x_{H}=x_{D}=1$

Area $B C D=\frac{1}{2}(B D \times C H)$
$C H=\left|x_{C}-x_{H}\right|=|6-1|=5$
$B D=\left|y_{B}-y_{D}\right|=|-7-3|=10$
Area $\mathrm{ABE}=\frac{1}{2}(10 \times 5)=25$

Hence Area $A B C D E=25+39=64$

