Question 1. How do I write the expression that would take a number x and square it, and then square the result of the first operation and continue on for n generations?

Solution. After the first operation we shall obtain x^{2}. Applying the same operation twice we get

$$
\left(x^{2}\right)^{2}=x^{2^{2}}
$$

We shall prove by induction that after n applications the result will be $x^{2^{n}}$.
The base of induction: for $n=1$ the result is $x^{2}=x^{2^{1}}$ as was mentioned above. The inductive step: suppose the formula is true for n, i. e. the result is $x^{2^{n}}$. We need to show that it is true for $n+1$. Indeed,

$$
\left(x^{2^{n}}\right)^{2}=x^{2^{n} \cdot 2}=x^{2^{n+1}}
$$

Answer: The result after n operations is $x^{2^{n}}$.

