Question 1. How do I write the expression that would take a number x and square it, and then square the result of the first operation and continue on for n generations?

Solution. After the first operation we shall obtain x^2 . Applying the same operation twice we get

$$(x^2)^2 = x^{2^2}.$$

We shall prove by induction that after n applications the result will be x^{2^n} .

The base of induction: for n = 1 the result is $x^2 = x^{2^1}$ as was mentioned above. The inductive step: suppose the formula is true for n, i.e. the result is x^{2^n} . We need to show that it is true for n + 1. Indeed,

$$(x^{2^n})^2 = x^{2^n \cdot 2} = x^{2^{n+1}}.$$

Answer: The result after n operations is x^{2^n} .