Conditions

Consider the equation $y u _x-x u _y=0,(y \& g t ; 0)$. Check for each of the following initial conditions whether the problem is solvable. If it is solvable, find a solution. If it is not, explain why:
a) $u(x, 0)=x^{\wedge} 2$
b) $u(x, 0)=x$
c) $u(x, 0)=x, x \& g t ; 0$

Solution

$y \frac{d u}{d x}-x \frac{d u}{d y}=0$
$\frac{d x}{y}=\frac{d y}{x}=\frac{d u}{0}$
$\varphi_{1}(x, y, u)=u$
$\frac{d x}{y}=\frac{d y}{x}$
$x^{2}-y^{2}=c$
$\Phi\left(u, x^{2}-y^{2}\right)=0$
$u=f\left(x^{2}-y^{2}\right)$

Where f has a derivative at some interval.

So we can see now, that the problem is solvable for $1^{\text {st }}$ condition.

