Conditions

The number of values of k for which the system of equations $x+y=2, k x+y=4, x+k y=5$ has atleast one solution?

Solution

We must construct a system of 3 equations, where there will be 3 variables: x, y and k :
$\left\{\begin{array}{l}x+y=2 \\ k x+y=4 \\ x+k y=5\end{array}\right.$
$x=2-y$
$3^{\text {rd }}$ equation minus $1^{\text {st }}$ give us:
$(k-1) y=3$
$y=\frac{3}{k-1}$

Then, from the second equation:
$k\left(2-\frac{3}{k-1}\right)+\frac{3}{k-1}=4$

It's obvious, that $k=1$ couldn't be a solution (because all 3 equations would have equal left sides, but the right sides wouldn't be equal). So, let's multiply on (k-1):

```
\(2 k(k-1)-3 k+3=4(k-1)\)
\(2 k^{2}-2 k-3 k+3-4 k+4=0\)
\(2 k^{2}-9 k+7=0\)
\(D=81-4 \times 2 \times 7=81-56=25>0\)
```

On this point we can already answer our question - as the discriminant is positive - there are 2 different solutions for k, that's why the number of values of k, for which the system of equations has at least one solution is TWO VALUES

To make sure it, we can find 2 values of k :
$k_{1,2}=\frac{9 \pm 5}{4}=\left[\begin{array}{l}k=\frac{7}{2} \\ k=1\end{array}\right]$

After that we will have 2 pairs of x and y, for each k, which could be found by substitution k value in these equations:

$$
\begin{aligned}
& x=2-y \\
& y=\frac{3}{k-1}
\end{aligned}
$$

