Answer on Question \#23926 - Math - Statistics and Probability Question

If 16 dates are named at random, what is the probability that 3 of them will be Sundays?

Solution

The problem is not well posed, because we are not informed about the set of days: month, year or decade, from which we take days. Suppose we take 16 days from a month that consists of 31 days including 4 Sundays. There are $\binom{31}{16}$ ways to select 16 days and we must choose 3 Sundays out of 4 and 16-3=13 days from the rest 314=27 days, which are not Sundays.

Thus, by the classical definition of probability, the probability that 3 of them will be Sundays equals

$$
\begin{gathered}
\left(\begin{array}{l}
\binom{4}{3} \cdot\binom{27}{13} \\
\binom{31}{16}
\end{array}=\frac{\frac{4!}{3!(4-3)!} \cdot \frac{27!}{13!(27-13)!}}{\frac{31!}{16!(31-16)!}}=\frac{\frac{4!}{3!\cdot 1!} \cdot \frac{27!}{13!\cdot 14!}}{\frac{31!}{16!\cdot 15!}}=\frac{4!}{3!\cdot 1!} \cdot \frac{27!}{31!} \cdot \frac{16!\cdot 15!}{13!\cdot 14!}=\right. \\
=\frac{4 \cdot 3!\cdot 27!\cdot 16 \cdot 15 \cdot 14 \cdot 13!\cdot 15 \cdot 14!}{3!\cdot 1!\cdot 31 \cdot 30 \cdot 29 \cdot 28 \cdot 27!\cdot 13!\cdot 14!}=\frac{4 \cdot 16 \cdot 15 \cdot 14 \cdot 15}{31 \cdot 30 \cdot 29 \cdot 28}= \\
=\frac{201600}{755160}=\frac{20160}{75516}=\frac{10080}{37758}=0.26696 .
\end{gathered}
$$

Answer: 0.26696 .

