We try to determine $S := \operatorname{Span}_k(G)$. Using $\{e1 - e2, e1\}$ as a basis for V, we have $\varphi(123) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ and $\varphi(12) = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}$,

so $S \subseteq T$, the *k*-subalgebra of all upper triangular matrices in M₂(*k*). Since *S* is noncommutative, we must have *S* = *T*. It follows that rad $S = \operatorname{rad} T = k \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = k \cdot (1 - \varphi(123)).$