We try to determine $S:=\operatorname{Span}_{k}(G)$. Using $\{e 1-e 2, e 1\}$ as a basis for V, we have $\varphi(123)=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ and $\varphi(12)=\left(\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right)$,
so $S \subseteq T$, the k-subalgebra of all upper triangular matrices in $\mathrm{M}_{2}(k)$. Since S is noncommutative, we must have S $=T$. It follows that $\operatorname{rad} S=\operatorname{rad} T=k \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=k \cdot(1-\varphi(123))$.

