Let ζ be a primitive p - th root of unity, and let $G=\langle x\rangle$. The map $x \rightarrow \zeta$ extends to a surjective ring homomorphism $\mathrm{Q} G \rightarrow \mathrm{Q}(\zeta)$. Therefore, one of the simple components of $\mathrm{Q} G$ is $\mathrm{Q}(\zeta)$. On the other hand, $\mathrm{Q} G$ also has a simple component Q . Since $\operatorname{dim}_{\mathrm{Q}}(\mathrm{Q} \times \mathrm{Q}(\zeta))=1+p-1=p$, we must have $\mathrm{Q} G \sim \mathrm{Q} \times \mathrm{Q}(\zeta)$. For any commutative ring R, let $\mathrm{U}_{0}(R)$ denote the group of units of finite order in R. Then $\mathrm{U}_{0}(\mathrm{Q} G) \sim \mathrm{U}_{0}(\mathrm{Q}) \times \mathrm{U}_{0}(\mathrm{Q}(\zeta)) \sim$ $\{ \pm 1\} \times \mathrm{U}_{0}(\mathrm{Q}(\zeta))$. We finish by noting that $\mathrm{U}_{0}(\mathrm{Q}(\zeta))$ is the group of roots of unity in $\mathrm{Q}(\zeta)$, which is just the group $\langle-\zeta\rangle=\langle \pm 1\rangle \times\langle\zeta\rangle$

