

In the following, let U_+ denote the trivial representation, and U_- the sign representation of kG . We shall construct four more indecomposable kG -modules: M, M' of dimension 3, and V, V' of dimension 2. Let $M = ke_1 \oplus ke_2 \oplus ke_3$, on which G acts by permuting the ei 's, and let $V = M/k(e_1 + e_2 + e_3)$.

1) Let $V_0 = kv$, where $v = e_1 - e_2 \in V$. We check easily that V_0 is a kG -submodule of V isomorphic to U_- , with $V/V_0 \sim U_+$. Thus, the composition factors for V are $\{U_+, U_-\}$. We claim that V has no submodule $\sim U_+$. In fact, if 0 is not equal $u = ae_1 + be_2$ spans a line $\sim U_+$, then $ae_1 + be_2 = (12)u = ae_2 + be_1$ and $ae_1 + be_2 = (123)u = ae_2 + be_3 = -be_1 + (a-b)e_2$ imply that $a = b = 0$, a contradiction. It follows that V is indecomposable, and hence so is $V' := U_- \otimes V$. Also, since V' contains $U_- \otimes U_- \sim U_+$, we see that V is not isomorphic to the V' .

(b2) Using the same type of calculations as above, we can verify the following two properties of $M = ke_1 \oplus ke_2 \oplus ke_3$:

(A) M has no kG -submodule $\sim U_-$.

(B) The only kG -submodule of M isomorphic to U_+ is $k(e_1 + e_2 + e_3)$.

We can now show that M is indecomposable. In fact, if otherwise, (A) implies that $M \sim U_+ \oplus N$ for some N . Since M has composition factors $\{U_+, U_-, U_-\}$, N has composition factors $\{U_+, U_-\}$. By (A) again, N must contain a copy of U_+ . But then M contains a copy of $U_+ \oplus U_+$, which contradicts (B). This shows that M is indecomposable, and hence so is $M' := U_- \otimes M$. Since $M \supseteq k(e_1 + e_2 + e_3) \sim U_+$, M' contains a copy of $U_- \otimes U_+ \sim U_-$. By (A) again, we have M is not isomorphic to the M' . This completes the construction of the six indecomposable kG -modules.
