Let U be an irreducible $k G$-module, and let T be the action of (123) on U. Since $(T-I)^{3}=T^{3}-I=0, T$ has an eigenvalue 1 , so $U_{0}=\{u \in U: T u=u\}$ is nonzero. For $u \in U_{0}$, we have (123) ((12)u)=(12)(132)u= (12)(123) $u=(12) u$, so (12) $u \in U_{0}$ also. This shows that U_{0} is a $k G$-submodule of U, so $U_{0}=U$, and we may view U as a $k G$-module where $G=G /\langle(123)\rangle=\left\langle(12)^{\prime}\right\rangle$. Since (12) has order 2 , we have $U=U_{+} \oplus U_{-}$where U_{+} $=\{u \in U:(12) u=u\}$, and $U_{-}=\{u \in U:(12) u=-u\}$. Therefore, we have either $U=U_{+}$(giving the trivial representation), or $U=U_{-}$(giving the sign representation).

