Given $h \in G$, let $\varphi: k G \rightarrow k G$ be the linear map defined by $\varphi(\alpha)=h \alpha e$. Consider the decomposition $k G=k G \cdot e \oplus k G \cdot(1-e)$.
 $\varphi(\alpha)=h \alpha \sum_{g \in G} a_{g} g=\sum_{g \in G} a_{g} h \alpha g$.
Thus, if $\varphi_{g}: k G \rightarrow k G$ is defined by $\varphi_{g}(\alpha)=h \alpha g$, we have $\chi(h)=\sum_{g \in G} a_{g} \operatorname{tr}\left(\varphi_{g}\right)$. We finish by calculating $\operatorname{tr}\left(\boldsymbol{\varphi}_{g}\right)$ ($g \in G$). Since φ_{g} takes G to $G, \operatorname{tr}\left(\varphi_{g}\right)$ is just the number of group elements $\alpha \in G$ such that $h \alpha g=\alpha$, i.e. $g=$ $\alpha^{-1} h^{-1} \alpha$. Thus, if g is not conjugate to $h^{-1}, \operatorname{tr}\left(\varphi_{g}\right)=0$. If g is conjugate to h^{-1}, the number of $\alpha \in G$ such that $g=$ $\alpha^{-1} h^{-1} \alpha$ is $\left|C_{G}(h)\right|$, so $\operatorname{tr}\left(\boldsymbol{\varphi}_{g}\right)=\left|C_{G}(h)\right|$. It follows that $\chi(h)=\left|C_{G}(h)\right| \cdot \sum_{g \in \mathrm{C}} a_{g}$, where C is the conjugacy class of h^{-1} in G.

