Solve each exponential equation. Give the exact value for x.

(a)
$$9^x = 1/81$$

$$9^x = \frac{1}{81}$$
; => 81=9²;

$$9^{x} = \frac{1}{9^{2}}$$
;

$$9^x = 9^{-2}$$
; => $a^{f(x)} = b^{g(x)}$, and $a > 0$, $a \ne 1$ then $f(x) = g(x)$

$$9=9 \Rightarrow x=-2$$
.

(b) $3^x=6$

$$3^x = 6$$
; => $a^x = b => x = \log_a b$

$$3^x = 6$$
; => $x = \log_3 6 = \log_3 6 = \frac{\log 6}{\log 3} = 1.6309$.

(c) $4^x=2.5$

$$4^x = 2.5 = \frac{5}{2}$$
;

Eliminate the exponential from the left hand side.

Take the logarithm base 4 of both sides:

Answer:
$$x = \frac{\log_{\frac{5}{2}}^{\frac{5}{2}}}{\log 4} = 0.6609$$
.

(d)
$$2^x = 3$$

$$2^{x} = 3$$
;

Eliminate the exponential from the left hand side.

Take the logarithm base 2 of both sides:

Answer:
$$x = \frac{\log 3}{\log 2} = 1.584$$
.