Solve each exponential equation. Give the exact value for x .

(a) $9^{\wedge} x=1 / 81$

$9^{x}=\frac{1}{81} ; \Rightarrow 81=9^{2} ;$
$9^{x}=\frac{1}{9^{2}} ;$
$9^{x}=9^{-2} ; \quad=a^{f(x)}=b^{g(x)}$, and $a>0, a \neq 1$ then $f(x)=g(x)$
$9=9=>x=-2$.
(b) $3^{\wedge} x=6$

$$
\begin{aligned}
& 3^{x}=6 ; \Rightarrow a^{x}=b=>x=\log _{a} b \\
& 3^{x}=6 ; \Rightarrow \mathrm{x}=\log _{3} 6=>\log _{3} 6=\frac{\log 6}{\log 3}=1.6309 .
\end{aligned}
$$

(c) $4^{\wedge} x=2.5$
$4^{x}=2.5=\frac{5}{2} ;$
Eliminate the exponential from the left hand side.
Take the logarithm base 4 of both sides:
Answer: $x=\frac{\log \frac{5}{2}}{\log 4}=0.6609$.
(d) $2^{\wedge} x=3$
$2^{x}=3 ;$
Eliminate the exponential from the left hand side.
Take the logarithm base 2 of both sides:
Answer: $x=\frac{\log 3}{\log 2}=1.584$.

