Task:

Consider the equation $y \cdot u_{x}-x \cdot u_{y}=0,(y \geq 0)$. Check for each of the following initial conditions whether the problem is solvable. If it is solvable, find a solution. If it is not, explain why:
(a) $u(x, 0)=x^{2}$
(b) $u(x, 0)=x$
(c) $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}, \mathrm{x}>0$

Solution:

$y \cdot u_{x}-x \cdot u_{y}=0,(y \geq 0)$
$\frac{d x}{y}=\frac{d y}{-x}$
$-x d x=y d y$
$y d y+x d x=0$
$\varphi(x, y)=\frac{y^{2}}{2}+\frac{x^{2}}{2}$
$u(x, y)=c_{1}\left(\frac{y^{2}}{2}+\frac{x^{2}}{2}\right)=c_{2}\left(y^{2}+x^{2}\right)$
(a)
$u(x, 0)=x^{2}$
$u(x, 0)=c_{2}\left(0^{2}+x^{2}\right)$
$c_{2}=1$
$u(x, y)=y^{2}+x^{2}, y>0$
(b)
$u(x, 0)=x$
$u(x, 0)=c_{2}\left(0^{2}+x^{2}\right)=c_{2} x^{2}$
$c_{2}=\frac{1}{x}$
$u(x, y)=\frac{y^{2}}{x}+x, y \geq 0$
(c)
$u(x, y)=\frac{y^{2}}{x}+x, x>0, y \geq 0$

Answer:

(a) $u(x, y)=y^{2}+x^{2}, y>0$
(b) $u(x, y)=\frac{y^{2}}{x}+x, y \geq 0$
(c) $u(x, y)=\frac{y^{2}}{x}+x, x>0, y \geq 0$

