Question 23819Show that the rank of a matrix $\mathrm{C}=\mathrm{AB}$ is never greater than the smaller of the rank of A and the rank of B. Can it ever be strictly less than the smaller of these two numbers?.
Solution. Since $C x=A(B x)$, then $\operatorname{rank}(C) \leq \operatorname{rank}(A)$, next it is known that rank of transpose matrix is equal to the rank of the original matrix, thus, $\operatorname{rank}\left(C^{\prime}\right)=\operatorname{rank}(C)$ and $C^{\prime} x=B^{\prime}\left(A^{\prime}(x)\right)$, thus $\operatorname{rank}\left(C^{\prime}\right) \leq \operatorname{rank}\left(B^{\prime}\right)=$ $\operatorname{rank}(B)$, thus $\operatorname{rank}(C) \leq \operatorname{rank}(A), \operatorname{rank}(C) \leq \operatorname{rank}(B), \operatorname{thus} \operatorname{rank}(C) \leq$ $\min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

