Question 23818 Let u and v be two non-zero N-dimensional complex column vectors. Show that the rank of the $N \times N$ matrix $u \bar{v}^{\prime}$ is one.
Solution. We know the following general inequality $\operatorname{rank}\left(u \bar{v}^{\prime}\right) \leq \min \left\{\operatorname{rank}(u), \operatorname{rank}\left(\bar{v}^{\prime}\right)\right\}=$ 1 , since u and \bar{v}^{\prime} are non-zero. Next $\operatorname{rank}\left(u \bar{v}^{\prime}\right) \geq 1$, since u and \bar{v}^{\prime} are nonzero, consequently

$$
\operatorname{rank}\left(u \bar{v}^{\prime}\right)=1
$$

