Question 23816 Show that $\operatorname{rank}(A+B)$ is never greater than the sum of $\operatorname{rank}(A)$ and $\operatorname{rank}(B)$.
Answer. Assume that A, B are matrix from $V=R^{n}$ to $W=R^{m}$. Next, by the definition $\operatorname{rank}(A+B)=\operatorname{dim}((A+B) V)=\operatorname{dim}(A V+B V) \leq \operatorname{dim}(A V)+$ $\operatorname{dim}(B V)=\operatorname{rank}(A)+\operatorname{rank}(B)$, since dimension of sum of vector spaces is less than sum of dimensions of the respective terms.

