A group consists of 15 people: 5 Americans, 6 Canadians and 4 Mexicans.
(a) In how many ways can a sub-group of 4 people be selected?
(b) In how many ways can a sub-group of 4 people consist of all Canadians?
(c) What is the probability that a sub-group will consist of all Canadians?
(d) In how many ways can a sub-group of 4 people consist of 2 Canadians and 2 Mexicans?
(e) In how many ways can a sub-group of 4 consist of 1 American, 1 Mexican and 2 Canadians?

Solution

(a) In how many ways can a sub-group of 4 people be selected?
$(5+6+4$ people choose 4$)=(15$ people choose 4$)=C(15,4)=1365$ ways
(b) In how many ways can a sub-group of 4 people consist of all Canadians?
(6 Canadians choose 4$)=C(6,4)=15$ ways
(c) What is the probability that a sub-group will consist of all Canadians?
$\mathrm{P}($ all Canadians $)=\frac{6}{15} * \frac{5}{14} * \frac{4}{13} * \frac{3}{12} * \frac{2}{11} * \frac{1}{10}=0.0002$
(d) In how many ways can a sub-group of 4 people consist of 2 Canadians and 2 Mexicans?
(6 Canadians choose 2) times (4 Mexicans choose 2) $=\mathrm{C}(6,2)^{*} \mathrm{C}(4,2)=15 * 6=90$ ways
(e) In how many ways can a sub-group of 4 consist of 1 American, 1 Mexican and 2 Canadians?
(5 Americans choose 1) times (4 Mexicans choose 1) times (6 Canadians choose 2$)=\mathrm{C}(5,1) * \mathrm{C}(4,1) * \mathrm{C}(6,2)=5 * 4 * 15=300$ ways

