We prove that a is a unit of infinite order in ZG.
$\varphi: \mathrm{Z} G \rightarrow R$ defined by $\varphi(x)=\zeta$. . Note that $\varphi(a)=-2\left(1+\zeta+\zeta+\zeta^{3}\right)-\zeta^{3}-3 \zeta^{2}-\zeta+2=-\zeta\left(3+5 \zeta+3 \zeta^{2}\right)$. On the other hand, $(1+\zeta)^{4}=1+4 \zeta+6 \zeta^{2}+4 \zeta^{3}-\left(1+\zeta+\zeta^{2}+\zeta^{3}\right)=\zeta\left(3+5 \zeta+3 \zeta^{2}\right)$. Therefore, $\varphi\left(-a(x u)^{-2}\right)=1$. Since $-a(x u)^{-2}$ has clearly augmentation 1 , our earlier argument implies that $-a(x u)^{-2}=1$. It follows that $a=$ $-(x u)^{2}$ is a unit of infinite order in ZG , with $a^{-1}=-(x u)^{-2}=-x^{3} v^{2}=-x^{3}\left(1-x-x^{4}\right)^{2}=-x^{3}\left(1+x^{2}+x^{8}-2 x-2 x^{4}\right.$ $\left.+2 x^{5}\right)=2 x^{4}-3 x^{3}+2 x^{2}-x-1$.

