

Let $u = 1 - x^2 - x^3$, $v = 1 - x - x^4$, $R = \mathbb{Z}[\zeta]$ where ζ is a primitive 5th root of unity. By Dirichlet's Unit Theorem, $U(R)$ has rank 1. To shorten the proof, we shall assume the number-theoretic fact that $1 + \zeta$ is a fundamental unit in R , that is, $U(R) = \langle 1 + \zeta \rangle \cdot \{\pm\zeta^i\}$.

(Of course, $1 + \zeta$ has infinite order. Its inverse is $-(\zeta + \zeta^3)$.) Now consider the projection $\varphi: \mathbb{Z}G \rightarrow R$ defined by $\varphi(x) = \zeta$. We claim that $\varphi: U(\mathbb{Z}G) \rightarrow U(R)$ is an injection. To see this, suppose $\varphi(\alpha_0 + \alpha_1x + \dots + \alpha_4x^4) = 1$, where $\alpha_i \in \mathbb{Z}$. This implies that $1 = \alpha_0 + \alpha_1\zeta + \alpha_2\zeta^2 + \alpha_3\zeta^3 + \alpha_4(-1 - \zeta - \zeta^2 - \zeta^3) = (\alpha_0 - \alpha_4) + (\alpha_1 - \alpha_4)\zeta + (\alpha_2 - \alpha_4)\zeta^2 + (\alpha_3 - \alpha_4)\zeta^3$, so we have $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha$ (say), and $\alpha_0 = 1 + \alpha$. On the other hand, the “augmentation” $\alpha_0 + \alpha_1 + \dots + \alpha_4 = (1 + \alpha) + 4\alpha = 1 + 5\alpha$ must be ± 1 , since $\sum \alpha_i x^i \in U(\mathbb{Z}G)$. Therefore, we must have $\alpha = 0$, and $\sum \alpha_i x^i = 1$, which proves our claim.

We can now determine $U(\mathbb{Z}G)$ by computing $\varphi(U(\mathbb{Z}G))$. Of course, $\varphi(\pm G) = \{\pm\zeta^i\}$. A simple calculation using the same ideas as above shows that $1 + \zeta \notin \varphi(U(\mathbb{Z}G))$. On the other hand, $uv = 1$ (by direct calculation), and $\varphi(xu) = \zeta(1 - \zeta^2 - \zeta^3) = \zeta - \zeta^3 + (1 + \zeta + \zeta^2 + \zeta^3) = 1 + 2\zeta + \zeta^2 = (1 + \zeta)^2$.

This, together with $\varphi(\pm G) = \{\pm\zeta^i\}$, imply that $[U(R) : \varphi(U(\mathbb{Z}G))] \leq 2$. Since $1 + \zeta \notin \varphi(U(\mathbb{Z}G))$, equality must hold, and we must have $\varphi(U(\mathbb{Z}G)) = \langle(1 + \zeta)\rangle \cdot \{\pm\zeta^i\}$, and therefore $U(\mathbb{Z}G) = \langle xu \rangle \times (\pm G) = \langle u \rangle \times (\pm G) \sim \mathbb{Z} \oplus \mathbb{Z}2 \oplus \mathbb{Z}5$.