Let $u=1-x 2-x 3, v=1-x-x 4, R=\mathrm{Z}[\zeta]$ where ζ is a primitive 5 th root of unity. By Dirichlet's Unit Theorem, $\mathrm{U}(R)$ has rank 1. To shorten the proof, we shall assume the number-theoretic fact that $1+\zeta$ is a fundamental unit in R. Consider the map $\varphi: Z G \rightarrow R$ defined by $\varphi(x)=\zeta$. Then $u v=1$ (by direct calculation), and $\varphi(x u)=\zeta\left(1-\zeta^{2}-\zeta^{3}\right)=\zeta-\zeta^{3}+\left(1+\zeta+\zeta^{2}+\zeta^{3}\right)=1+2 \zeta+\zeta^{2}=\left(1+\zeta^{2}\right.$. Of course, $1+\zeta$ has infinite order. Then u has infinite order.

