Since $A^p = B^p = I$ and AB = BA, given two maps define a representation $D : G \to GL_2(K)$. We shall prove a slightly stronger statement: For any extension field $L \supseteq K$, D cannot be equivalent over L to any representation of (r - h)

G over *k*. Indeed, assume otherwise. Then there exists $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(L)$ which conjugates both *A* and *B* into

 $GL_2(k)$. By explicit matrix multiplication,

$$U^{-1}BU = e^{-1} \begin{pmatrix} * & td^2 \\ -tc^2 & * \end{pmatrix}, U^{-1}AU = e^{-1} \begin{pmatrix} * & d^2 \\ -c^2 & * \end{pmatrix}$$

where $e = \det U = ad - bc \in L^*$. Therefore, td^2e^{-1} , d^2e^{-1} , tc^2e^{-1} , c^2e^{-1} all belong to k. Now c, d cannot both be zero, since $U \in GL_2(L)$. If $c \neq 0$, we have $t = tc^2e^{-1}/c^2e^{-1} \in k$. If $d \neq 0$, we have similarly $t = td^2e^{-1}/d^2e^{-1} \in k$. This gives the desired contradiction.