Here χ_{i} are the characters of the simple left $k G$-modules, where k is a splitting field for G of characteristic not dividing $|G|$. The proof depends on the expressions for the central idempotents in $k G$ giving the Wedderburn decomposition of $k G$ into its simple components. These central idempotents are given by
$e_{i}=|G|^{-1} n_{i} \sum_{g \in G} \chi_{\mathrm{i}}\left(g^{-1}\right) g$. Now use the equations $e_{i} e_{j}=\delta_{i j} e_{i}$, where the $\delta_{i j}$'s are the Kronecker deltas.
The coefficient of h^{-1} on the RHS is $\delta_{i j}|G|^{-1} n_{i} \chi_{i}(h)$, and the coefficient of h^{-1} on the LHS is $n_{i} n_{j}|G|^{-2} \sum_{g \in G} \chi_{\mathrm{i}}\left(g^{-1}\right) \chi_{\mathrm{j}}(h g)$. Therefore, the desired formula follows.

